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A basic question in mathematical ecology is that of deciding whether or not a model for the
population dynamics of interacting species predicts their long-term coexistence. A sufficient
condition for coexistence is the presence of a globally attracting positive equilibrium, but that
condition may be too strong since it excludes other possibilities such as stable periodic
solutions. Bven if there is such an equilibrium, it may be difficult to establish its existence and
stability, especially in the case of models with diffusion. In recent years, there has been
considerable interest in the idea of uniform persistence or permanence, where coexistence is
inferred from the existence of a globally attracting positive set. The advantage of that
approach is that often uniform persistence can be shown much more easily than the existence
of a globally attracting equilibrium. The disadvantage is that most techniques for establishing
uniform persistence do not provide any information on the size or location of the attracting
set. That is a serious drawback from the applied viewpoint, because if the positive attracting
set contains points that represent less than one individual of some species, then the practical
interpretation that uniform persistence predicts coexistence may not be valid. An alternative
approach is to seek asymptotic lower bounds on the populations or densities in the model, via
comparison with simpler equations whose dynamics are better known. If such bounds can be
obtained and approximately computed, then the prediction of persistence can be made
practical rather than merely theoretical. This paper describes how practical persistence can be
established for some classes of reaction—diffusion models for interacting populations.
Somewhat surprisingly, the models need not be autonomous or have any specific
monotonicity properties.

1. Introduction

A basic question in mathematical ecology is that of determining whether a model
for the dynamics of interacting populations predicts their long-term coexistence. A
simple criterion for long-term coexistence is the presence of a globally attracting
equilibrium with all populations or population densities positive. However, that
criterion may be either too strong or too weak. A model which has a globally
attracting periodic orbit on which all populations fluctuate with time but remain
quite large probably should be interpreted as predicting coexistence, even in the
absence of an attracting equilibrium. Cn the other hand, it is not reasonable to infer
coexistence from a model possessing a globally attracting equilibrium at which the
predicted population of one of the species is less than one individual. In recent years,
there has been considerable interest in the idea of uniform persistence or permanence,
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where coexistence is inferred from the presence of a globally attracting positive set
rather than a single globally attracting equilibrium. The advantages of using the
criterion of uniform persistence/permanence to infer long-term coexistence are that
it allows the system to have complex dynamics (even a strange attractor) and that
often it can be established under more natural conditions than those needed to
establish the presence of a globally attracting equilibrium. The disadvantages of
using uniform persistence/permanence are that the techmiques used to establish
uniform persistence/permanence do not usually provide any information on the size
or location of the positive attracting set; also, in most cases the model must be cast
as a dynamical or semidynamical system, thereby severely restricting the sort of time
dependence that may be allowed in the coefficients. In the present paper, we present
an alternative approach based on seeking asymptotic lower bounds for the popu-
lations or densities in our models, via comparison with simpler equations whose
dynamics are better known. Specifically, we shall use diffusive logistic equations with
time-periodic coefficients for purposes of comparison. Since the solutions of such
equations can often be estimated or approximately computed with a moderate
amount of additional effort, our lower bounds can provide computable quantitative
information about the long-term dynamics of the models and thus make predictions
of persistence which are practical as well as theoretical. The lower bounds are also
practical in the sense that they are robust relative to changes in the nonlinearities
in the models, which is important in ecological applications since the available data
are often limited in quantity or quality. Somewhat surprisingly, we do not need to
assume that the original models be autonomous or time-periodic, and we do not
need any specific monotonicity hypotheses. The main limitation of our approach is
that 1t requires each spectes to be subject to logistic self-regulation, which excludes
some types of predator—prey models.

The key ingredients in this work are comparison methods, the theory of periodic-
parabolic logistic equations, and the associated spectral theory for periodic-parabolic
operators. The importance of the work of Peter Hess on those topics cannot be
overstated. His results and ideas, collected in [ 307, are the foundation and inspiration
for the present paper. Without them, it quite literally could not have been written.
We are deeply thankful that we were privileged to know him and learn from him.

The models we consider have the form

du,

— = L + fi(x, t, i)u; in Q x (0, o),

ot H ( : (1.1)
Biu=0 OnaQX(O,CD)’ i=1,.__,n’

where © < R™ is a bounded domain, L; is a second-order uniformly strongly elliptic
operator (possibly with T-periodic time-dependent coefficients), with f; T-periodic in
t, and Byu=u or B,u = f;u+ 0u/dv or some f§; = 0. In principle, we could allow f; to
have nonlocal dependence on i via delays or spatial averages, but we do not con-
sider those situations explicitly. Models such as (1.1) can describe many sorts of
interactions between populations and their environment or among populations;
they include diffusive Lotka—Volterra models, among many others. There is a
large literature on such models; see the discussion and references in
[13-18, 30, 32, 33, 36, 46, 47, 51, 56].
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Since the dependent variables represent population densities, we are interested
only in non-negative solutions. The structure of (1.1) ensures that non-negative
(respectively positive) initial data will induce non-negative (respectively positive)
solutions; when we use terms such as ‘globally’ attracting, we generally mean globally
with respect to positive solutions. The main conditions we impose on the nonlinearit-
ies are that the nonlinearity f, for the last species can be bounded by f, < R, — C,u,,
with R, and C, possibly dependent on x and T-periodic in ¢ but without reference
to Uy, ..., 4,-; that after we have asymptotic upper bounds on u;.4, ..., 4, we can
obtain an upper bound f; £ R; — C;u; for large t with R; and C; possibly depending
on the bounds on u;,4,...,u,; that once we have asymptotic upper bounds on
Uy,..., U4, we can obtain a lower bound on f, of the form f, =zr,— c,u, for large ¢
with r, and ¢, depending on the upper bounds for uy, ..., u,., and thus can obtain
an asymptotic lower bound on u,; and, finally, we have f; = r; — c;u; for large t, with
r; and ¢; possibly depending on the asymptotic upper bounds for all the components
and/or on the asymptotic lower bounds for ;. 4, ..., #,. Our hypotheses are met by
almost all Lotka—Volterra models for competition or predator-prey interactions
with self-regulation of each population, but they are also met by many other models,
including models with a limited amount of mutualism. A class of models satisfying
our structural hypotheses are those satisfying a food pyramid condition [5, 557 with
self-regulation, that is, where the ith species is a predator on some or all of those
with indices j>i but is prey to those with indices j <i. We cannot eliminate the
hypothesis of self-regulation for each species, which excludes certain predator-prey
models. The reasons for that may be deeper than mere technicalities associated with
our methods. In [117, it is shown that for systems of ordinary differential equations,
the presence of self-regulation limits the possible complexity of dynamics in a manner
somewhat analogous to the limitations imposed by a competititve or cooperative
structure. The essential idea in our analysis is to view each component of (1.1) as a
sub- or supersolution to an appropriate logistic equation which admits a positive
attracting T-periodic (or temporally constant) steady-state. Related ideas are used in
the context of specific systems in [1, 2, 4, 15, 18, 23, 25, 26, 30, 36, 44, 48, 49, 57]. By
using results of Hess [307] on diffusive logistic equations, we can often estimate their
steady-states in terms of quantities such as the principal eigenfunctions of associated
linear problems—which can be as simple as sin (mx).

There is a substantial literature on models such as (1.1), especially Lotka—Volterra
models, and there are several different sorts of results that have been obtained
by various authors. Many investigators have concerned themselves with the
existence of positive equilibria or periodic steady-states; see for example
[7,12,16,23-27, 30, 34, 36-44, 49]. In some cases, the equilibria can be approxi-
mated or bounded by some type of monotone iteration; see [ 25, 26, 36, 48, 571. The
problem with approaches based on studying equilibria is that it is often very difficult
to obtain good uniqueness or global stability results. In any case, the equilibria may
not be adequate to describe the asymptotic dynamics of the system. One way of
handling these difficulties is to say something about the ‘stability’ of sets more general
than equilibria. An idea that is very useful and elegant in cases where the model
induces a monotone semiflow is the concept of compressivity introduced by Hess
(see [307]). A monotone system is said to be compressive if it admits a globally
attracting order interval. Related ideas are the method of contracting rectangles
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[8,51] (the basic ideas date back at least to [45]) and monotone iteration in the
parabolic context based on sub- and supersolutions for the system [36, 487]. These
approaches typically treat all components simultaneously and often require some
sort of monotonicity in either the nonlinearities or the semifiow induced by the
model. A related but more general idea is that of uniform persistence/permanence;
a system is said to be uniformly persistent if it admits a positive set which is bounded
away from zero in each component (i.e. bounded away from the boundary of the
positive cone) and which is globally attracting for positive solutions. If in addition
the system is also dissipative (i.e. all orbits enter some compact set in finite time),
then the system is said to be permanent. The idea of uniform persistence/permanence
is discussed in [9, 10, 16, 29, 31, 32, 53]. Some nonautonomous models are treated
in [97. Typically, the methods for establishing uniform persistence/permanence are
‘soft” in that they do not provide any information about the location of the positive
attractor. This is in contrast with compressivity, which may lead to bounds on the
attracting order interval via estimates on sub- and supersolutions, but which requires
some monotonicity. In recent work Cao and Gard [19, 207 introduced the idea of
practical persistence, which they define as uniform persistence together with some
information about the location of the positive attractor. They studied ordinary
differential equations with delays using multiple Lyapunov functions. In a sense, we
also use multiple Lyapunov functions, but they are of the simplest possible sort—
namely the components of the system taken one by one. (We do not consider
Lyapunov functions involving several components at once, because we want to allow
different differential operators in different components. In the case of ordinary
differential equations that is not an icene and Twvammov methads can he nged with
great creativity; see for example [3].) Our work could also be viewed as an extension
of the idea of compressivity to nonmonotone situations, or of contracting rectangles
to Banach space.

We have followed the terminology of Cao and Gard [9, 20] in referring to our
results as yielding practical persistence. There are two major reasons for using the
term ‘practical’. The first is that many ecologists believe that for any species there is
‘minimum viable population’ required to avoid extinction via genetic drift or localised
environmental catastrophe [ 28, 527; often the proposed minimum viable population
for a given species will number several hundred individuals. Thus, for a model’s
prediction of long-term persistence to be practical, it must imply a lower bound on
the expected population which are larger than the minimum viable population. The
second reason why the term ‘practical’ is appropriate, is that there is almost always
error and uncertainty in the construction of models, often together with considerable
complexity, but for predictions to be useful in practice they must be robust and
simple enough to be understood by ecologists and decision-makers with only a
modest knowledge of mathematics. As we shall demonstrate via examples, our
methods allow us to obtain robust and simple bounds on the location of a positive
attracting set for models which can be quite complicated.

For applied reasons we do not assume that our nonlinearities are time-periodic,
but only that they can be bounded appropriately by periodic functions. The sort of
situation we envision in the models is one where some important quantity such as
temperature or precipitation varies randomly from day to day within a known range,
but the range shifts from season to season in a periodic way. We must assume,
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however, that the elliptic operators in our models are periodic if they have any time
dependence at all. This requirement is probably a technicality, but we do not know
how to remove it.

We now outline the structure of the remainder of this paper. In Section 2, we
introduce the necessary background material and state two reasonably general
theorems on practical persistence. The key idea is the method used to prove the
main theorems rather than the theorems themselves. In Section 3, we examine some
representative examples and see what sort of information can be extracted from the
general theory in those particular cases. Again, the methods are probably more
important than the specific results, although some of the estimates are new and may
be of interest to mathematical ecologists. In Section 4, we consider some less represen-
tative examples with interesting mathematical structure and explore some possible
extensions and variations of the theory.

2. Mathematical background and general results
The models we shall consider have the form
u;, = Liu; + fi(x, &, iDu; in Q x (0, 00),
Biu; =0 on dQ x (0, 0), i=1,...,n

We assume that Q < R™ is a bounded domain with Q) smooth and, for each i, L; is
a uniformly strongly elliptic operator of the form

(2.1)

m m

Liu= Y aiy(x, g + Y bilx, thuy, + ci(x, tu,
k=1 k=1

with 2, a;(.{, = ab|(|? for some constant a, >0, where all the coefficients are
T-periodic in ¢ and Holder-continuous in x and t, lying in C***Q x R) for some
a>0, with @}, = al, and ¢’ 0. (There need not actually be any t-dependence.) We
also assume that

du
Bu=u or Bu= P + B(x)u,

with B(x) of class C'** and B = 0. By the theory of second-order periodic parabolic
problems introduced in [21, 35] and developed and described in [30] we have that,
for T-periodic R(x, t) € C**?(Q, R), the problem

¢.—L;p— Rp=0¢ in Q xR,
Bip=0 on 0Q x R,
@ is T-periodic,

(2.2)

has a principal eigenvalue ¢, with positive eigenfunction.
For purposes of comparison, we shall use solutions to diffusive logistic equations
of the form

u, = L;u + Ru — Cu? in Q x (0, ),
Biu=0 on 0Q x (0, ),
where C=C(x, 1) is T-periodic, C(x,t)=C,>0, and Ce C***Q, R). Since C is

(2.3)
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strictly positive, any sufficiently large constant is a supersolution to (2.3), so solutions
are bounded. By standard arguments based on the maximum principle, any solution
with non-negative nontrivial initial data will be strictly positive in Q for ¢t > 0, with
u>0 on Q in the case of Neumann or Robin boundary conditions and oujov <0
on 0Q in the case of Dirichlet conditions. We have the following lemma ([30,
Theorem 28.17):

Lemma 2.1. The problem (2.3) admits a positive T-periodic solution (which will be
denoted by 0(L;, R, C)) if and only if the principal eigenvalue o in (2.2) satisfies ¢; <0
(i.e. the solution u =0 to (2.3) is unstable). In that case, O(L;, R, C) is a global attractor
Sfor solutions of (2.3) with non-negative nontrivial initial data.

ReEMARK 2.2. If ¢, 2 0, then non-negative solutions to (2.3) approach 0 as t— co. By
parabolic regularity theory (alternatively by the smoothing properties of evolution
operators) the convergence to 6 can be taken in C***%(Q, (0, 0)); see for example
[13,14, 30, 32]. In the case of trivial t-dependence in L;, R and C, the regularity
requirements may be relaxed somewhat; see [13—157. Similar generalisations are
probably possible in the genuinely periodic-parabolic case as well, but we shall not
pursue that question here.

We can now state a reasonably general theorem giving conditions which imply
the existence of asymptotic lower bounds on solutions of (2.1). What is really
important, however, is not so much the specific theorem but the method used to
prove it. The ideas are probably easiest to understand in the context of a food
pyramid (see [5, 557) in which the kth species preys upon some or all of the species
witn nigner indices DUT cannol be preyed upon by them, while 1t may be preyed
upon by some or all of the species with lower indices but cannot prey upon them.
(The thereom was formulated with such a situation in mind, but applies to somewhat
more general situations.) The method of proof would then be to find an asymptotic
upper bound on u,, the density of the nth species, use that to obtain an upper bound
on the n— Ist species, then use those two bounds to obtain a bound on the
n— 2nd species, etc. Once upper bounds have been obtained for all predator species,
those would then be used to obtain an asymptotic lower bound on the nth species.
Since the nth species acts as prey for some or all of the others, the lower bound on
u, would then be used to obtain a lower bound on, say, u,_; (or more generally
on the species with largest index that preys on the nth species) and those lower
bounds would be used to obtain lower bounds on, say, u,_, and so on until lower
bounds are obtained for all species. In some cases the process can be refined via
further iteration of estimates. We shall discuss some applications of the theorem or
its proof in the next section.

TureoREM 2.3. Let ii=(uy, ..., u,) be a solution to (2.1) with u;(x,0)= 0, u;{(x,0)%0
fori=1,...,n
(i) Suppose that for i=1, ..., n and for all i with u; 20 for all i, we have

fi(x: t: ﬁ) é Ri(x> t: Ui+1: sy Un) _ Ci(x: t)uis (24)

provided w, U, for k=i+1,...,n {so R,= R,(x, t)) where R, and C, are T-periodic
in t, Holder-continuous in x,t of class C**? and R, is monotone increasing in
Uit1,..., U,. Then solutions to (2.1} exist globally in time. Suppose also that the
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principal eigenvalue o4 for
9= Lo — R,p = ap,
B,p =0,

is negative; define 0,=0(L,,R,,C,), where 0(L,,R,,C,) is the unique globally
attracting positive steady-state solution of

U, = Lnu + (Ru - Cu u)u:
B,u=0.

(2.5)

(If there is no explicit t dependence in L,, R, and C,, then 0, will be an equilibrium,
in general 0, is T-periodic in t.) For any sufficiently small >0, define 0; (inductively)
by 8,=06(L;, Ri(x,t,(1 + 80,51, ...,(1 +€8,), C;), where we suppose that for ¢>0
sufficiently small the principal eigenvalue o, of
@, —Lip _Ri(x> L (1 + E)éi-’-la ceey (1 + S)gn)(p =00,
Bi¢ = 05

is negative for each i so that 0;> 0 inside Q. Then, for t sufficiently large, we have
u; = (1+¢)0;.

(ii) Suppose that in addition to (2.4) there is, for each i, an index
k(@ye {i,i+1,...,n} and a functionr;(x,t, Uy, ..., Uiy, Uiyy, ..., U,) with the same
periodicity and regularity hypotheses as R;, such that r; is monotone decreasing in U,

Sfor k £ k(i) (k +# i) and monotone increasing in U, for k > k(i), and a Hélder-continuous
and T-periodic function c;(x, t) >0 so that

fi(x7 L, 17) g ri(xa ta Ula LS | Ui-—l’ Ui+1: R Un) - Ci(x: t)ui (2'7)

whenever w, = U, for k> k(i) and w,. < U, for k < k(i), k #i. Suppose further that the
principal eigenvalue for

gﬁt'“L"W —r,,(x, [ (1 + 8)@1, L) (1 +8)gu—1)¢ =00,
B,p=0,

is negative for ¢>0 sufficiently small and define 0,=0(L,,r,(x, ¢t (1+ 80, ...,
(1+80,-1),c,), then define 0,=0(L;,r(x,t (1+ &)0;,...,(1+60;,_1,(1+60;,,
(I e)ékm, (1 —-&)0riy+15---> (1—28)0,),c;) where we suppose that, for £¢>0
sufficiently small, the principal eigenvalue of

(0t—Li¢“7'i(X, L, (1 + 8)61: DRI (1 +8)ék(i)7 (1 _E)Qk(i)+1s ey (1 "E)Qn)(p = 0@,
Bi(0=0,
(2.9)

is negative. Then, for any sufficiently small ¢ > 0, we have u; = (1 — &)0; for all i when
t is sufficiently large.

(2.6)

(2.8)

Remark 2.4. For upper bounds the eigenvalue condition in (2.6) is not really neces-
sary. If the eigenvalue in (2.6) is positive for some i, the implication is that u;—0 as
t— o0, so for large t we may view the species represented by u; to be absent and
reapply the theorem to the remaining components in the system. In this sense, the
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proof of the theorem yields results on extinction as well as persistence in certain
cases. The significance of the index k(i) in (ii) is that it permits consideration of cases
where the ith species competes against those with higher indices and cases where
the ith species is a predator on those below. For example, if n=3 and f3(if) =
ay — bygthy — bagty — bagtis, fo(f) = ay — by thy — byytiy; — byztis, then k(2) =3 since to
obtain a lower bound on f,(#) we will need an upper bound on u;. If f5(#)=
as — by iy — bayuy — bagus and fo(if) = az — byyuy — byyuy + bysiz, then we would use
k(2) =2 since now a lower bound on u; will yield a better lower bound on u, than
could be obtained otherwise.

The proof of Theorem 2.3 is structured so that we first obtain all upper bounds
and then obtain lower bounds, so that hypothesis (2.7) of part (ii) need only hold
for 0 < U; Zsup (1 + &), for the conclusions to be valid.

Proof of Theorem 2.3. The existence theory of [6] (among others) implies the local
existence of solutions and that the solutions are global if they are bounded uniformly
on their interval of existence. We shall establish such bounds in the course of this
proof. Since the ith nonlinearity is zero when u; = 0, it follows from standard invariant
set theory (see [51]) that the set {ie R":u;=0,i=1,...,n} is positively invariant.
It follows from the strong maximum principle that if u; =0, u;£0 at t=0, then
;>0 on Q for all ¢t > 0; also, under Dirichlet boundary conditions du;/dv <0 on dQ
and for Neumann or mixed boundary conditions u; > 0 on Q. Suppose that we have

a solution to (2.1) that exists on [0, 7). We have, by (2.4),
U, = Ln u, + f;x(x3 [ ﬁ)un

- A & TS N\ ~ 7 o N
= Ay TN Ay L) T N\ Ay Ly JUy

so that u, < v, with v, satisfying v,(x, 0) = u,(x, 0) and
vn, = Ln U,, + (Rn(x> t) - C,,(X, t)U,,)U,,,
BH vll = OJ

because u, is a subsolution of (2.10). Since C,(x,t) = C,, >0, any sufficiently large
constant is a supersolution to (2.10), so v, exists globally and v,{x, t) < ¥, on [0, 7)
for some constant ¥, depending on u,(x, 0). Thus 0 <u, <V, on [0, 7). By (2.4) we
then have

(2.10)

Uyq, = Ln~1un-1 +fu-1(x: t, ﬁ)“n*l
§ Lu—lun-—l + (Rn—l(x: ts Vn) - anl(x: t)un-l)un~1

on [0,1), so we have 0Su,_;Sv,-; on [0,7) where v, satisfies v,.((x,0)=
u,—4(x,0), and
Uy—3,= L, 10,1+ (Rn~1 - Cn—luu-l)vn—la
B, 10y-1= 0.
As in the case of v,, we have v,_, S V,_, where V,_, depends on ¥, and u,..{(x, 0),
50 0=u,-; £V, on [0, 7). Continuing in this way, we find that u, <V, on [0, 7)
for k=1,...,n so that in fact [0, t) cannot be the maximal interval of existence

since sup |i|-» oo as t]7. Since >0 was arbitrary, we have global existence of
solutions.
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The process of obtaining upper bounds on the variables u, as ¢ — o0 is a refinement
of that used above to show global existence. Again, we start with the observation
that u, is a subsolution to (2.10). By Lemma 2.1, we have v,— 0, = 60(L,, R,, C,) as
t—co, with convergence in C!***2(Q, (0, 0)) so that, for any &>0, we have
u, S0, < (14 60(L,, R, C,) for sufficiently large ¢. It follows that, for ¢ sufficiently
large,

uu—l, é m—1Up—1 + [Rn——l(xs t: (1 + 8)én) - Cn—lun—l]uu—l
under boundary condition B,,_4, so that u,_, is a subsolution for
Uyq = Ln~1un—1 + [er--l(x, t: (1 + 8)911) - Cn—lvn—ljvn—l'
We may assume that the principal eigenvalue o, of
@y — Ln—l(p - Rn—l(xa 3 (1 + 8)éu)w =00,
Bn— 19= 07

is negative, so that v,_;—0,_,=0(L,_;, R,—1(x, t, (1 +£)8,)) as t— o0, and hence
for t large we have u,_; <v,_y <(1+¢)0,_,. We may continue this process to
conclude that, for ¢ large enough, we have u, < (1 + )8, for k=1, ..., n, where 0, is
the unique positive globally attracting steady-state for

Uy = Lkv + [Rlc(xa L, (1 + B)ék+1: cees (1 + 8)511) - Clcv]U9
BkU == 0.
This completes the proof of part (i).
Once we have obtained upper bounds on uy, ..., u, for sufficiently large t, we can
in principle obtain lower bounds, again starting with u, and working up to u,. By

hypothesis (2.7) and the conclusion of part (i), we see that u, is a supersolution to

the problem
v =an+ [7',,()6, [ (1 +8)§ s 1 + ¢ 0-"_ —“C"U]U,
: 1o (L+8)0,-4) 2.11)
B,v=0,

for t > t, with t, sufficiently large. Also, u, is positive on Q under Neumann or Robin
boundary conditions and positive on Q with du/dv <0 on 09 under Dirichlet
conditions. Choose v to satisfy (2.11) with v(x, t,) = u,(x, t,). By hypothesis, the prin-
cipal eigenvalue o, of (2.8) is negative, so 0,=0(L,,r.(x,t, (1+ef,,...,
(1+¢),_;),c,) is a global attractor for nontrivial non-negative solutions. Thus
v— 8, as t— o0, so for ¢ > t, sufficiently large we have u, = (1 — £)d,. Next we observe
that u,_, is a supersolution to

Vy=Ly_ 104106t (1 +80,,...,(1+80,_,, (1 +)8,)—c,_v),
B, v=0,
if k(n—1)=n and to
V=L, 0+ (e 6, (14+8)0;,...,(1+6)0,_,5, (1 —8)8,) —c,_1v),

if k(n—1)=n—1. In either case, hypothesis (2.9) and Lemma 2.1 imply that, if
v(x, t;) = u,-,(x, t;), then v is positive inside Q (at least) and so v—0,_; as t—co.
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Since u,_;=v at t=t, we have u,_,;>(1—¢)f,., for t sufficiently large. We may
continue in this way to obtain the corresponding asymptotic lower bounds on
U,_q,...., 4, where the different possible estimates depending on the value of k(i)
for each i are taken into account by the definition of §;. [J

Because the upper bounds in part (i) of Theorem 2.3 are used to define the lower
bounds in part (ii), it is sometimes convenient to replace the upper bounds with
constant bounds that are less sharp but simpler.

THEOREM 2.5. (i) Suppose that the hypotheses of Theorem 2.3(1) up to (2.5) are satisfied.
Define 0, as in Theorem 2.3 and let M, be a constant such that M, > 8, (for which it
suffices to have M, > sup (R,/C,) by the maximum principle). Define M; inductively to
be a constant such that M;> 6(L;, Ri(x,t, M;.1,..., M,), C;), where we assume in
place of (2.6) that the principle eigenvalue for

@~ Lip — Ri(x, t, M 11, ..., M,)p = a0,
Biw = O:

(2.12)

is negative for i=1,...,n. In that case, we have u; < M; for all i when t is suffic-
iently large.

(ii) Suppose that the hypotheses of Theorem 2.3(ii) up to (2.7) are satisfied and that
the principal eigenvalue in (2.8) remains negative if (1 + £)0; is replaced with M. Define
OF = 0(L,, r,(x, t, My, ..., M,_,), c,), then define inductively

0F =0(Ly, 1i(x, t, My, ..., My, (L—€)0Fn 415 - - - (1 —8)07), ci)s

¢twLi¢_ri(x= L, Ml: e aMk(i)a(l _E)Q;f(i)+1: e 9(1 _S)Q;f)¢=0¢a (2 13)
Bip =0, .

is negative for ¢ >0 sufficiently small. Then for any sufficiently small ¢ >0 we have
w; 2 (1 —e)8F for all i, provided t is sufficiently large.

The proof is identical to that of Theorem 2.3, except that M, replaces (1 + &)
throughout, so we omit it.

3. Some examples

In this section we shall apply the results and methods of the previous section in
some specific examples. First we should note that there are a number of specific
systems (mostly with Lotka~Volterra dynamics and constant or periodic coefficients)
that have been treated using related methods; see for example [1,2, 4, 15, 18, 25,
26, 30, 49, 577]. A typical case is that of n competitors, discussed in the comments in
[473. Suppose that fori=1,...,n,

w, = D;Au+ (ai— Y bijuj> u; in Q x (0, 00),
=1 (.1
u;=0 on dQ x (0, o),

where all coefficients are positive constants. We may apply Theorems 2.3 and
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2.5 with Ry=a;, C;=c¢;=by;, and r;=a;— Z;%;b;;u;. Since everyone competes,
k(iy=n for all i We immediately have the asymptotic upper bounds
uw; (14 ¢)0(D;A, a;, by;) < a;/b;; for small ¢ > 0 and sufficiently large ¢, provided that
a; > D; Ay, where Aq is the principal eigenvalue of —A on Q with Dirichlet boundary
conditions. (The last assumption is needed for (2.6) and (2.12).) Using Theorem 2.5

with M; = a;/b; yields the asymptotic lower bounds.

u; Z(1—¢)f <DiAa a; — Z (bijaj/bjj): bii) (3.2)
j#i
for ¢ > 0 and ¢ sufficiently large, provided that
ai"‘ Z (bl"a‘]/b”)>DlA.0, i= 1,...,71, (33)
j#i

so that (2.13) is satisfied. Sharper but more complicated lower bounds can be
obtained from Theorem 2.3, namely

u;=(1—¢)0 <DiA> a;— Z bii(1+ &)0(D;A, a;, byy), bii)

J#i

for ¢>0 small and ¢ sufficiently large. (If & is small enough that
(14 8)6(D;A, a;, by;) < a;/b;; for all i, then (3.3) implies (2.9).) Finally, if we denote by
wo(x) the eigenfunction for 4, in

—Ap=2p on Q,
p=0 on 0%,
with normalisation sup g, = 1, then we have
8(DA, a, b) 2 [(a— D4o)/b]po, (34)

which can easily be obtained via the method of upper and lower solutions, as in
[23, 30, 44]. (The analogous estimate is valid under boundary conditions B;p =0.)
This last estimate combined with (3.2) yields the asymptotic lower bound

u;z(1—¢ [(“i - Z (bija;/by) — Di%)/bii—J Po(x) (3.5)
J#i

for &> 0 provided ¢ is large. Since 4, and ¢, can be explicitly computed for simple

geometries and there are good numerical methods for computing them in general

situations, the bound (3.5) is indeed ‘practical’.

What if the coefficients depend on x, t or #? Suppose that a; < a;(x, t, ) £ @; and
that b;; < by;(x, t, @) < by;, with all constants positive. We may still use Theorem 2.5;
now we take R; = a;, C;=by, r;= a; — Z;%;b;;u;, ¢; = b;. As before, we find that, for
large t, w; < M; = d;/b;. If (3.3) is replaced with the condition

a;— Y (by@;/by) > Dido, i=1,...,n, (3.6)
J*i
then we have the asymptotic lower bounds as t— o0

u; =2 (1—e)f <DiA’ ai— Y. (bya;/by), Eii)
i (3.7)
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=(1—¢) l:(gi - }; (by;a;/by;) — Di’10>/5ii] Po(x).

Combining the above results, we have the following corollary.

CoroLLARY 3.1. Suppose that @ satisfies (3.1) with a;<a(x,t,#)<a; and
bii S bii(x, t, ) < by; with by; 2 0, by; > 0 for all i, j and with (3. 6) satzsﬁed (That forces
a;>0.) Then for any £ >0 and t sufficiently large, we have (3.7) for i= , 1, with
corresponding asymptotic upper bounds u; < a;/b;;. (Note that only boundedness and
regularity of the coefficients are needed fo; the bounds in (3. 7) 10 monotonicity or

periodicity are required.)

The case of n competitors is somewhat special, since only upper bounds are used
to obtain lower bounds. Cases where there are predator—prey interactions typically
require more involved lower bounds on the predators Which involve lower bounds
(3.4). To examine that case, let us suppose that u; represents a predator preying on
competitors u, and us, and consider the simple model

uy, = Dy Auy +(ay — byyuy + byouy + byzuz)uy

Uy, = D, Au, +(a; — byt — byouty — byzus)u, (3.8)

Uz, = D3 Aus + (az — baguy — baaus — bazus)us,

W =uy=u3=0 on 9Q x (0, c0).

The coefficients a;, b;; may depend on x, t, and i#i. The Lotka—Volterra case (i.e. the
case of constant coefficients) is treated in [25]. As in (3.1), suppose that there are
constants g;, d; b,,,b with g;<a; 5 d; and b”Sbu_b”, with a,, a; and by, i=
1,2,3 strlctly positive and b” =0 for all i, j. To apply Theorem 2.5 to (3.8) we may
use R, =a; + by, + bysus, R, =a,, Ry =a,, with C;=b;;, and conclude that, for
sufficiently large ¢, we have u, S M,=3a,/b,, Us S M3=a3/bs; and u; S M, =
(@, + (b1285/b22) + (b1385/b33)]1/b11, provided M, >0, where the bounds on u, and
u3 are used to obtain the bound on u,. (If we allow a; <0, it may be the case that
M, <0 also; if so, the eigenvalue condition (2.12) fails. Since R, is increasing in u,, u,
and we have u; < (1 + ¢)8(D;A, G, b;) < M; for £>0 small and ¢ large, i=2,3, it
follows by the monotonicity of the principal eigenvalue with respect to the weight
function that (2.6) also fails. The conclusion is that u; — 0 as t — o0; see Remark 2.4.
A related example for which a different prediction of extinction is discussed in more
detail is given at the beginning of Section 4.) To get lower bounds, we take k(2) =
k(3) = 3 since u, and u; compete, but k(1) =1 since u; preys on u, and u;. Hence,
the lower bounds on u, and u; will depend only on the upper bounds already
obtained for u;, u, and uz, while the lower bounds on u; depends on the lower
bounds on u, and uz. Thus, 1y =a; + by + byistts, 1, =0, — bojtty — boztty, 73 =
a3 — b3yuy — bayu,. For u, and u; we can proceed as in the case of (3.1) provided
that

ay— 521M1 - 523M3 > D, g,

- _ (3.9)
a3 — b3y My — b3, My > D3 A,
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so that (2.13) holds. In that case, we find that, for any ¢ > 0 and ¢ sufficiently large,
we have

Uy 2 (1—¢0(D,A, a, — 521M1 - EzaMsa Ezz) =(1—¢)0%,

-~ _ - (3.10)
Uz = (1 —)0(D3A, a3 — b3y My — b3, M, bs3) = (1 — )03,
From (3.10) we can obtain the estimate
ur 2(1—8)0(DyA, a; +bio(1—€)0% + by3(1 —e)07, 511) (3.11)

for any ¢ >0 and t sufficiently large, provided that the principal eigenvalue for

=D Ap—(a; + bi,(1 —€)0F +bi3(1 —€)F)p = o9 in Q,

(3.12)
p=0 on 9Q

is negative. (Since there is no t-dependence in the coefficients, we will have ¢, =0
since @ must be periodic with arbitrary period in that case.)) The estimates in (3.10)
can be made less precise but more tractable via (3.4). It is fair to ask how practical
the estimate (3.11) really is, since it involves 8% and 0%, and even estimating 8%,
0% in terms of ¢, leaves (3.11) and (3.12) rather complicated. In fact, it is possible
to obtain readily computable estimates that allow verification of (3.12) and interpret-
ation of (3.11) provided that the geometry of the underlying domain Q is simple. We
shall consider the case where Q is an interval, but rectangles could be treated in a
very similar way and circles with a bit more work. The key point is to find tractable
lower bounds on ¢, that allow us to get a positive constant lower bound on the
term a; + by,(1 —&)0% + by3(1 — £)0% in (3.11), at least on some subdomain of Q. In
the case of Dirichlet boundary conditions, this is as much as can be asked since the
densities u; will be zero on 0Q, as will g, and 8(DA, R, C). In general, we may still
need to work on a subdomain of Q since we may have g, <0 or even &, <0,
indicating that the predator cannot survive in the absence of prey. For mixed
boundary conditions, we will have g, >0 on Q but g, will typically be larger near
the centre of Q than near dQ, so we may need to consider g, on a subdomain to
obtain sufficiently large lower bounds on 8% and 6% relative to g, <0. Only in the
case of pure Neumann conditions can we expect @, to be a constant. We shall
examine the case of Dirichlet conditions in detail.

We want to use (3.4) together with the following observations about how eigenval-
ues for elliptic problems and the equibria for diffusive logistic equations on Q are
related to the corresponding quantities on subdomains of Q.

LemMA 3.2. Suppose that Q < Q is a subdomain with 0 smooth.

(i) Suppose that Q(x) is defined on Q, q(x) on €, with Q(x) = q(x) on & and both Q
and q Hélder-continuous. The (respective) principal eigenvalues o4(Q), 64(q) for the
problems

—DAp—Qx)p=0p inQ,
p=0 on 09,




262 R. S. Cantrell and C. Cosner

If (3.9) holds with Ay=n* and (3.15) holds then (for ¢ >0 sufficiently small, so that
the lower bounds are nontrivial) the estimates (3.13), (3.16) hold for sufficiently large t.

ReMARK 3.4. The algebraic conditions of Corollary 3.3 are somewhat complicated
but can be readily evaluated for specific values of the bounds on the coefficients. We
can always obtain the upper bounds u; < M; for ¢t large; the complications are in
verifying (3.9) and (3.15). One obvious condition is that g; be large for all i and E,-j
be small for i # j, but others are also possible. Specifically, we could have a;, £d, <0
provided that g;> 0 for i=2, 3, b12(as/2bys) + bis(as/2bs3) + a; > 0, l;l-j is small for
i=2,3 and j+#1i, and D; is small for all i. That can be seen by noting that if b;;—0
for i=2,3 and j#1i, then the M, terms in (3.9) disappear and m;— g,/2b; in (3.15)
so that the inequalities will be satisfied for small ¢ if D; is small for each i. This last
case is interesting from the applied viewpoint, since it models a situation in which
the predator will become extinct in the absence of prey, which is often a biologically
realistic assumption.

So far we have focused our attention on problems where we generally could avoid
detailed consideration of the time and space dependence of the coefficients and where
the nonlinearities could be compared readily with those appearing in Lotka—Volterra
models. In the next examples, we shall consider a case where the time and space
dependence is treated more explicitly and another case where the nonlinearities are
not so close to those in Lotka—Volterra systems.

Consider a predator—prey model of the form

ug, =V Dy (x)Vuy + (ay(x, t, ) — by (x, t, @)y + bio(x, £, W)ug)uy,
Uy, =V + Dy (x)Vity + (az(x, t, #) — by (x, T, B)ug — byo(x, 1, H)us)u,, (3.17)

uy =0, %%Z=O on 0Q x (0, c0),

where D,,D,2Dy>0 on Q, the coefficients b;; are all positive, and all coefficients
are (perhaps trivially) T-periodic in ¢ and bounded in i. As before, let a;, 4;, b;; and
E,-j denote respectively lower and upper bounds on the coefficients. We will want to
allow some of these to be time dependent with period T, specifically a,(t), a,(t),
b1a(t), o1 (t) and by, (t); the others will be constants. For sharpness we would typically
choose for example a;(t) = inf {a;(x, t, #): x € Q, u,, u, = 0}, but in some cases simpler
but less sharp estimates might be useful. We may take R, =d; + b, Us, Ry=a,,
C,=by;, C,=Db,, and obtain the asymptotic upper bounds u, £a,/b,=M,,
uy S [@, + (b128,/b25)]/b11 = M, for t sufficiently large. (We assume that a, and
Gy + (b12d,/b,,) are large enough that (2.12) is satisfied.) Next, with k(1) =1, k(2) =
2, let 7, =a;(t) + b12()Us, 12 =a5(t) — by (U4, ¢y =byy, ¢;=byy(t). We obtain a
positive T-periodic asymptotic lower bound on u, from the steady-state solution
0% of the problem

U=V Dy(x) Vs + (a5(t) — by ()M — bap(t))us,
du (3.18)
a=0 on 4Q x (0, o),

provided that (3.18) satisfies the eigenvalue condition (2.13). However, the eigenvalue
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problem has the form

9. — V * Dy(x) Vo — (a,(t) — by () My)g = 0,

9
5‘5 =0 ondQx(0,00), ¢ T-periodicin t,

where a,(t) — b, (£)M, is T-periodic; so by [ 30, Lemma 15.37 the principal eigenvalue
is given by o% = u, — p,/T, where u, is the principal eigenvalue of the problem

9. — V- D,(x)Vo = ug,

P (3.19)
—8_(5 =0, 9 T-periodic in t,
and
T -
p2= J (a2(2) — boy ()M,) dt. (3.20)
0

Since there is no explicit ¢-dependence in (3.19) and the boundary condition is of
Neumann type, the principal eigenvalue p, in (3.19) is zero, so 0§ <0 if p, >0 in,
(3.20). Assuming that to be the case, let 63 (t) denote the unique positive T-periodic,
steady-state for (3.18). It is easy to see that the positive T-periodic solution to the
ordinary differential equation

6 = (az(t) — by ()M — by (t)0) (3.21)

is a steady-state for (3.18), so by uniqueness 6%(t) = v. (The periodic solutions to
periodic logistic equations of the form (3.21) can be explicitly computed from the
coefficients, so that 6% (¢) is in principle a known function; see [22].). We assume
p2>0 in (3.20) and may then conclude that for arbitrary >0 and large ¢,

Uy = (1 —)f%(t) > 0. Substituting that lower bound into r; yields
=V Dy (x)Vuu+ [2,(£) + byz(t)(1 — )03 (£) — by, ulu (3.22)
u=0 on dQ, u  T-periodic. '

Again, we need to verify (2.13). The assumptions required for that will also enable
us to give an explicit asymptotic lower bound (1 — &)8%(x, t) on u,. We shall again
use [30, Lemma 15.3], which states that the principal eigenvalue oF for

¢~V Di(x)Vp —[a:(t) — b1 (1)(1 — )83 ()]g = oy,

o (3.23)
p=0 on 0Q, ¢ T-periodic
is given by of = u; — p,/T, where
T
= j Lai() + b1 (6)(1 — €)% (2)] de (3.24)
0
and p, is the principal eigenvalue for
— V- D(x)Vep = pp,
@ 1 ¢ =up (3.25)

p=0 ondQxR, ¢ T-periodic.
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Since (3.25) has no explicit t-dependence, the eigenvalue y; is simply the principal
eigenvalue for the elliptic problem

=V Di(x)V§ = i,
=0 ondQ

If 0¥ <0 we have the asymptotic lower bound u, = (1 — &)8¥(x, t), where 8% (x, t) is
the unique positive T-periodic steady-state for (3.22). We can make the lower bound
more explicit by noting that 8% (x, t) is bounded below by the subsolution yg(£)y; (x),
where i/,(x) is the eigenfunction of (3.26), corresponding to p, normalised with
sup ¥y =1, g(t) is defined as

(3.26)

q(t) =exp { L (@1(5) = b12(s)(1 — £)03 (s)) ds — tpl/T} (3.27)

and y satisfies — o —yb,; sup ¢ =0, that is, we have y < —o% /b, sup g. (See [30],
specifically the proof of Lemma 15.3 and Example 28.4.) We have

COROLLARY 3.5. Suppose that i is a solution to (3.17) with u,, u, initially non-negative
and not identically zero. Define My =G,/byy, My = [, + (b128,/b32)]/b1; in terms of
the bounds on the coefficients of (3.17). Suppose that p, >0, where p, is defined in
(3.20), and let 0%(t) be the unique positive periodic steady-state of (3.21). Suppose that

py > uy T, where py, iy are defined in (3.24), (3.25) respectively. Then for any ¢ >0
and t sufficiently large, u, = (1—¢)8%(t) and u;=(1— e)(—py + py/ T (X)g(t)/
sup q(bn) where 1//1(x) is the prmczpal ezgenfunctzon fo; (3 26) and hence (3.25) with

A AR
dup l[ll = L unu VV”CI& li\l.} LD LILC ,l“'llt:l Luu.u,juuuuuu ucjumu UL\ Tk )

ReMARK 3.6. In view of [22], 6%(¢) in principle can be computed explicitly in terms
of integrals involving the coefficients in the periodic logistic equation (3.21), so that
p; and ¢(t) can also be explicitly computed. The eigenvalue and eigenfunction y,, Y,
may or may not be explicitly computable depending on D,(x) and the geometry of
Q; in any case, there are good numerical approximations and theoretical estimates
available; see [54] or some of the articles in [507. Again, the lower bounds are at
least reasonably practical.

There are many reasons to consider periodic lower bounds of the type obtained
in Corollary 3.5. Seasonal variations are often of biological interest, and in some
cases either both species may experience a negative population growth rate for part
of the year. The use of coefficient bounds that are T-periodic is appropriate since
there will generally be random variations in weather but those are often limited
deviations from an expected seasonal pattern. The eigenvalue u, in (3.25) and (3.26)
carries information on the geometry of Q and the effects of variable diffusion. The
sort of process used to obtain the estimates in Corollary 3.5 could also be used with
different choices of which coefficients to bound in terms of constants and which to
bound in terms of T-periodic functions, or functions of x alone, or functions of both
x and t. The more complex the coefficient bounds, the more complicated the estimates.
The bounds on coefficients can be chosen to include those spatial or temporal effects
that are relevant to the system and to ignore others. The specific choices in
Corollary 3.5 were rather arbitrary since the main point was simply to illustrate
some of the flexibility of the method.
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So far, all the examples we have considered could be viewed as Lotka—Volterra
models with perturbed coefficients. As a final example of the general theory, we
consider a more general form of predator—prey model, namely

ug, = Dy Auy +(a; — byyug + byp f(un)uz)uy,
Uy, = D3 Auy +(ay — by f Uz )1y — bz tip )iz, (3.28)
u1=u2=0 on aQX(0,00),

where f(u) is a positive function with uf(4) monotone increasing in u. The function
f() is called the predator’s functional response to the prey. It describes the rate at
which predators consume the prey. In the Lotka—Volterra model, f(u) is a positive
constant. Some other typical forms are f(u) = 1/(o + Bu) or f(u) = u/(o + Bu?); see for
example [ 46, 56] for more discussion and biological background. Roughly speaking,
these forms of functional response model situations were the rate at which as single
predator consumes prey, described by the term u, f(u,), ‘saturates’ or levels off below
some maximum value no matter how large the prey density might be. Since any
given predator has finite capacity for consuming prey, models involving a functional
response of the above type are in some ways more realistic than those where the
predator’s consumption rate is simply assumed to be proportional to prey density.

Since our main interest here is in how f(u) may be included in our estimates, we
shall assume that the coefficients in (3.28) are constants. It would certainly be
possible to combine the functional response of (3.28) with the time and space
dependence of (3.17) but we shall not do that here. Let R, = a,, Ry = a; + by, U, f(U,),
and C;=by; for i=1,2. Applying Theorem 2.5, we obtain the asymptotic upper
bounds u, £ a,/b,, = M,, uy <{ay + by, M, f(M,)]/by = M, for t sufficiently large.
Strictly speaking, we should require a, — D, ;> 0 and a, + b, M, (f(M,)) — DAy >0
(where A, is the principal eigenvalue of —A on Q subject to Dirichlet boundary
conditions) so that (2.12) is satisfied; however, if (2.12) fails for some value of i, the
implication is that the ith species must decline toward extinction, so for that species
-we will have arbitrary small asymptotic upper bounds. The real point is that unless
(2.12) is satisfied, there is no chance of obtaining lower bounds from the present
methods. Since (3.28) is a predator—prey system, we take k(i) =i for i=1,2 and
use rp=a,—byUf, ri=a,+b,U,f(Uy), and ¢;=by;, i=1,2, where f=
sup {f(u):0<u < M,}. (Recall that the bounds (2.7) really need only hold when
0 £ U, £ M, since we require that ¢ is large enough that the asymptotic upper bounds
are all satisfied before deriving the lower bounds; see the remarks following
Theorem 2.3.) To obtain a lower bound on u,, we require

Gy — by M, f — Dyl >0 (3.29)

so that (2.13) is satisfied. We then obtain the asymptotic lower bound
Uy = (1 =)D, A, ay — by M, f, byy) = (1 — &)0% (x)

2 (1—e)(a,— by M, f — D3 20)/b22]00(x) = (1 — £)g*(x)

(where ¢, is the principal eigenfunction of —A on Q with Dirichlet boundary
conditions normalised with sup gy ==1) for ¢ sufficiently large and &> 0 arbitrary.
Using the estimates in (3.30), we must require that the principal eigenvalue for the

(3.30)
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that is the case, then all positive solutions to
=Dy Au+(a; — bys(1 — 8)85 — byu)u,

(44)
u=0 ondQ

will tend to zero as t— oo, provided ¢>0 is sufficiently small. However, since
sy = (1 — )% for large t, say t = t,, we see that eventually u, will be a subsolution
of (44), so that u, will be less than or equal to the solution of (4.4) with ‘initial’
data u(x, to) = uy{x, ty), and hence u, will tend to zero as t-—»oco. The principal
eigenvalue in (4.3) will be less than the one in (4.2), so in some cases we can neither
obtain extinction nor asymptotic lower bounds on u, without more (or different)
analysis, as we could have a positive principal eigenvalue in (4.2) but a negative one
in (4.3).

In Theorems 2.3 and 2.5, we obtained just one set each of upper and lower
asymptotic estimates and then quit. In some cases it is possible to proceed further.

) A T ~dlen ~14 oo a o
opcmubau_y, auyyuac WE 1ave a _Lluuxa—'vuu.cua a_ybtcm Uf LhC fUll.Ll

u;, = DAu; + (a+ Z b;u ,)

Bu;=0 on 99 x (0, w),

with constant coefficients where the diffusion rates, growth rates and boundary
conditions are the same in each equation. In that case, all the functions 6; and 8;
occurring in the lower and upper asymptotic estimates of Theorem 2.3 can be taken
10 De mulitipies oI (WA, d, 1). 1nat will De possiDie Decduse [Or any constant b,
B(DA, a, b) = (1/b)0(DA, a, 1), and also O(DA, a+ cB(DA, a, 1), 1) =(1 4+ )0(DA, a, 1)
for ¢ —1, as can be seen by substitution and the uniqueness of the positive
equilibrium for diffusive logistic equations. These observations permit iteration of
the estimates; for example, in the system

Uy, = Auy +(a—ug + buy)uy,
Uy, = Aty +(a — cuy — uy)uy, (4.5)
u;=u,=0 on dQ x (0, c0),

we would compare the second equation to u, = Au + (@ — u)u and then the first to

=Au+(a+ b0 —u)u where we assume a> A, and 0 is the positive solution
to AB+(a—0)=0 on Q, =0 on JQ. The asymptotic bounds are thus
Uy (1 +)0(A, a,1) and u; (1 +&)(1 + b)B(A, a, 1); so now we would compare u,
to the solution of

=Au+la—c(l1+b)(1+¢ef—uju, u=0,
u=0 on 0Q x (0, o),
to obtain the asymptotic lower bound
Uy = (1 —6)0(A, a—c(1+b)(1+8)0(A,a,1),1)

=(1—¢)(1—c(1+Db)(1+¢e)b(A,a,l)
*
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(We assume here that b and ¢ are small enough that ¢(1 + b) < 1, and make analogous
assumptions as needed.) The asymptotic lower bound on u, is then taken from
comparison with

Uy =Au+[a+b{(1—e)(l—c(l+Db)(1+¢e)f(A,a,1)—uly
u=0 on 9Q,
which yields the lower estimate for large ¢
w = (1 —8)0(A, a+b(1 —e)(1—c(1+b)(1+¢)0(A,a,1),1)
=(1—&)[1+b(1—e)(1—c(1+Db)(1+¢e)]0A, al)
= k(e)0(A, a, 1).

At this point in the proof of Theorem 2.3 we would quit; but here the facts that all
the bounds are essentially multiples of 6(A, a, 1) by algebraic combinations of
coefficients and that such bounds lead to others in the same from allow us to
continue. The last asymptotic lower bound on u; can be used to obtain a sharpened
upper bound on u, via comparison with u, = Au + (a — ck{e)0(A, a, 1) — wu, so that
for large t we get

Uy = (14 8)0(A, a— ck(e)0(A, a, 1), 1)
=(1+&)(1 — ck(e))0(A, a, 1).

This process can be continued and the resulting algebraic dependence of the bounds
on b and ¢ can be analysed; this sort of process is carried to its conclusion in some
of the estimates in [18], and some related ideas are used in [12,23, 44] among
other places.

A different sort of special case where the analysis can be simplifed and/or sharpened
is that of small diffusion. As D -0, we have by results in [13] that (DA, a, b)—a/b
uniformly on compact subsets of Q on which a/b is continuous if there is no t
dependence. This fact has been used to simplify estimates and facilitate computation
in various contexts; one such example is treated in [17], but there are many others
in the literature.

Finally, we note that our estimates are valid for short times as well as very long
ones if we can control initial data. Suppose u; and u, satisfy the predator-prey
system

Uy, = D Auy + (ay — uy + bypu)uy,
Uy, = Dy Auy + (ay — byy iy — tp )y, (4.6)
U, =u,=0 on dQ x (0, ),

with all coefficients positive constants, that initially u, is at the equilibrium
(D, A, a,, 1) it would attain in the absence of the predator, and initially u, is small.
This would correspond to a situation where a few predators have been introduced
into an area where there previously were prey but no predators. Throughout this
discussion, we shall assume that all the necessary eigenvalue conditions are satisfied.
Since u, is a subsolution of the equation u, = D, Au + (a, — u)u for any non-negative
u;, we see that u, must remain less than 8(D,A, a,, 1) since that is the solution of
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the diffusive logistic equation with the same initial data. It follows that u, will always
be a subsolution of u, = D;Au+ (a, + by,a, — wu since 8(D,A, a,, 1) <a,, so if u;
is initially small then u, < 6(D{A, a; + bjya,,1) < a; + byya, for all t. Using that
bound in the second equation, we may compare u, with the solution to u,=
Dy Au + (ay — by (a; + bypa,) — uyu with the same initial data. However, our initial
datum u, = 6(D, A, a,, 1) can easily be seen to be a supersolution to this last logistic
problem, so the solution starting there approaches 8(D,A, a; —byi(ay + byza,), 1)
from above. Hence, we will have the lower bound u, = 0(D,0, a, — by (a; + byya,), 1)
for all ¢. Since u, is initially small, we cannot expect a useful time-independent lower
bound; but since u, = 8(D, A, a, — b,y (a; + byaa,), 1) for all £ > 0, we can at least say
that u, will stay above the solution to the equation

U, =Dy Au+(a; +bi,0(D,A, ay — byy(a; + biya3), 1) —uju

with the same initial data. That lower bound could be made more explicit but less
sharp in some cases by the methods used in deriving the explicit estimates in
Corollary 3.3.
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